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Abstract

A fully standard quantum model of a particle interacting with a single-mode
phonon system under the influence of a thermodynamic bath is considered.
Numerically exact solution shows that, for very specific values of parameters
involved, the phonon mode cooperating with the particle becomes able to
respond to particle hops and thus to suppress the back particle transfer. The
particle becomes free at the end of the process, during which it can be transferred
prevailingly in one direction only, even going uphill in energy, at the cost of just
the thermal energy of the single bath. This behaviour is due to the fact that both
the particle and the particle + oscillator density matrices differ, in the stationary
situations and for at least intermediate oscillator coupling to the bath, from the
respective canonical forms.

PACS numbers: 05.30.-d, 82.20.Mj, 82.40.-g

1. Introduction

Basic knowledge acquired from, for example, biology is that general systems can appreciably
profit from their capability to check the state of their surroundings as well as themselves and
to decide, on the grounds of the results thus obtained, about their next steps or activities.
This is the basis for activity of real biomolecules [1]. One can call such a type of behaviour
active. Except for some general rules and rather phenomenologically described examples
discussed by synergetics, no really microscopic open quantum systems defined by explicit
Hamiltonians and able to behave actively in the above sense have, however, been known and
investigated until recently. The point is that the system—bath interaction has so far, almost
exclusively, been treated by perturbation theory in the system-bath coupling only, which
may, for technical reasons, be only approximate beyond some finite orders and in the case
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of weak coupling to the reservoir. Finite orders appreciably distort, however, any contingent
correlations between the state of the system and that of its surroundings which underlie the
effect investigated here?.

The active systems of the type we are going to investigate here always consist of a central
system (particle) cooperating with the active part of the system. Under the assumption that rates
describing this cooperation are commensurable with, or greater than, relaxation rates caused by
the interaction with the bath (this and only this is the regime we call the intermediate- or strong-
coupling regime), one can expect unusual phenomena as already discussed [3,4]. Deviations
from standard statistical physics as represented by the usual canonical ensemble are due to the
fact that the density matrix of the system deviates in such situations from its canonical form.
This is due to the fact that our system does, as usual, properly relax in stationary conditions
to a stationary state. This state is, however, never the truly standard thermal equilibrium one.
(Here, one should realize that the canonical form of the density matrix results in just the zeroth
order in the system—bath coupling, which is insufficient in the above intermediate- or strong-
coupling regimes.) In our case, as in [3,4], the system is represented by a single particle. Then
the one-way particle transfer obtained may be viewed as a slow scattering of the transferred
particles on a central or active part of the system with an instability and ensuing reorganization
of the latter in its intermediate states including the particle in question. If the reorganization
of the central system (necessary to block back-particle-transfer reaction channels) following
this instability is to be among two characteristic configurations, then this does not necessarily
imply that the quantum variable associated with this reorganization must be only dichotomic.
We have in mind the possibility of a usual oscillator mode having infinitely many excited
states and working, together with the particle, on an infinite bath representing a macroscopic
body. This then ensures the irreversible character of the dynamics. This oscillator mode has
a tendency of relaxing, at finite temperatures, to two different canonical states: dressed versus
undressed, or deformed versus undeformed in the polaron language, according to whether the
transferred particle happens to appear at a specific site—receptor or not. For the first time,
such a model has been reported in [S] and [3]; this paper provides a detailed form of the theory
as well as more extended results than preliminarily reported there.

The above behaviour is nothing but the particle—oscillator entanglement and all that is
possible provided that the particle is kept for a while fixed or is slow enough. The latter
assumption is, of course, not exactly but in principle well fulfilled when the particle can move.
This is then what provides us, upon sufficiently slow particle motion, with the possibility
of the oscillator responding dynamically to the presence of the particle by a sufficiently fast
re-relaxation to another state of the mode in question, as a result of the particle detection at
the specific site. The re-relaxation or reorganization can then block the back-particle-transfer
channel, i.e. allow effectively just one-way particle transfer. The point is that, for example,
the deformed canonical state of the mode may mean carrying the receptor with the transferred
particle away in space from the site the particle came from and, on the other hand, joining it
with another, previously disconnected site.

The importance of such particle behaviour for, inter alia, endothermic chemical reactions
can be hardly overestimated [6]. We should like to add right here that though our system
(our particle on three sites + the oscillator) is microscopic, the ‘system + bath’ complex is
macroscopic in its standard sense (it even becomes infinite with the infinite number of degrees

3 Technically, this observation implies the necessity to treat at least a part of the coupling to the surroundings as
exactly as possible. This why we, starting from [2], in many ensuing works as well as here, include part of the
surroundings (our oscillator below) of the real system of interest (transferred particles) in our system, utilizing the fact
that, in specific cases, Hamiltonians of such systems still remain relatively simple and solvable. Hence, the crucial
correlations can be properly included well. The rest of the surroundings is then treated as a bath in the usual sense.
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of freedom in the thermodynamic limit of the bath). Applications of the mechanism discussed
here to more realistic situations will, however, be discussed elsewhere.

The paper is organized as follows. In the next section, the Hamiltonian of the model
system, its coupling to the bath and the corresponding equations of motion are introduced. In
section 3, heuristic arguments based on an analysis of the model are given in order to elucidate
the effect to be expected. Numerical results confirming the arguments of section 3 are given
in section 4. The rigorous derivation of the equations of motion as well as further comments
on the results obtained can be found in the appendices.

2. Model

Having thus defined the aim of this work, let us start with introducing the model formally. As
usual in the nonequilibrium statistical mechanics, the quantum Hamiltonian can be split as

H=Hg+Hg+Hs_g. (nH

Here Hg designates the Hamiltonian of our system consisting, for simplicity, of a single particle
hopping among three sites available, and a single branch of harmonic vibrations (phonons)
interacting with the particle in a special but fully standard way. The Hamiltonian is standard.
What s in fact special is just very specific values of the parameters involved and the numerically
exact solution presented below (see also [3]). In order to be specific, we choose Hy as

Hg = J(c jco+che ) - [b+b +2y1+ I(c)er +cleo) - [b+b']
+8ecic; +ha (b +ycheo) b+ ycco). 2

Here c_;, ¢o and c¢; (or cT_,, cg and cf) are the annihilation (or creation) operators of the
particle at the above three sites —1, 0 and 1. Next, b ) designates the phonon annihilation
(creation) operator while i is the phonon energy. Commutational relations between b and b*
are Bose—Einstein-like. More complicated models are easily at hand and can be investigated
as below. The spin variables, if any, and the (anti)commutational relations among the particle
creation and annihilation operators become irrelevant as we have just one particle here. The
latter, whenever located at the —1, 0 or 1 site, has site energy equal to 0, O or e, respectively.
Therefore, if §¢ > 0 and the particle initially located outside site 1 is, at the very end of the
process, transferred to this site, the transfer is then up in energy (against the potential force
responsible for the site energy differences and acting on the particle). As for y, this is a so
far arbitrary real parameter with the meaning of the relative strength of the site-local particle
coupling to the phonon mode as well as that of the rigid-lattice hopping integral for the ‘—1°
<> ‘0’ particle transitions 2y J with respect to the corresponding phonon-assisted amplitude J
in (2). This double-role of y is one of the features of the model that condition the effect to be
reported below. As for 7, this is the corresponding phonon-assisted hopping amplitude for the
‘0’ < ‘+1’ particle transfers. Other Hamiltonians of the same type can be easily constructed
as well.

Such Hamiltonians as (2) have been, in different notations and context, used many times
in different branches of, for example, solid-state or molecular physics. Except for the greater
number of sites involved, this type of Hamiltonian corresponds to, for example, [7]. (The
coordinate of our oscillator mode then, or in general in the chemical context, represents the
solvent coordinate.) On a more general level, Hamiltonians of this type belong to a class of so-
called models of quantum dissipative systems of the type of the spin-boson model Hamiltonian
(with, of course, an explicit form of the bath and coupling to it, which still remains to be
specified here)—see [8,9] and papers cited therein. Essential differences as compared with
these works consist here only in investigation of one specific regime (definitely outside the
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weak-coupling one) for very specific values of parameters and application of an analytical
method allowing us to derive starting equations by a rigorous method of scaling and in the
above specific regime. These are solved numerically. The similarity to, and correspondence
with, all the older works is what makes our conclusions obtained here so surprising and,
simultaneously, so challenging.

In order to understand why the behaviour reported below is, in a way, so exceptional
and difficult to find, one should realize that, for example, three site Hamiltonians with site-
local as well as nonlocal linear coupling to a single harmonic phonon mode needed here are
characterized by 13 parameters (three site energies, three hopping integrals, three site-local
and three site-nonlocal coupling strengths and the phonon frequency). Two of them can be
taken as irrelevant owing to possible energy shifts and rescaling. We should, on the other hand,
also add temperature in energy units kg 7. Thus, we have a space of 12 model parameters. In
only a very limited part of the latter, however, can the effect reported below be expected and
really found. Moreover, we should (as already stressed above) take the above couplings inside
the system (particle and the phonon mode) as generally intermediate or rather strong, i.e. we
should avoid perturbational arguments of any type. Concerning the form of Hg in (2), one
should realize that in addition to other terms, it also includes the site-diagonal particle-phonon
coupling

HEs — yhwcheo(b+b7). 3)

part—ph
This coupling is of vital importance as will be argued below. With (2) and corresponding forms
of Hg and Hy_p, our problem then consists in solving the linear Schrodinger or Liouville—
von Neumann equations or equations derived from them, which are, however, always linear.
Irrespective of that, spontaneous self-organization (known otherwise in nonlinear and rather
phenomenological models) surprisingly appears even without, for example, persistent external
flows.

Now, the question is which form of the Hamiltonian of the bath Hp and the system—bath
coupling Hg_p we shall use. Let us stress that we are interested in neither the precise details
(dynamics) of the bath nor the role of specific forms of Hg_g. This is why we only assume
the following points.

e The bath is assumed to be connected to the system by just its coupling to the above
oscillator. Thus, for particle relaxation, our oscillator plays the role of a bottle-neck. The
simplest form of Hg_p (and Hp) compatible with this assumption as well as that below
concerning the Landau-Teller kinetics (11)—(13) is, for example,

1 N .

ﬁ;thGk(b‘Bk+sz)+;thBk’Bk. )
This is nothing but the coordinate—coordinate coupling of the oscillator of the system
with those from the bath, in the rotating wave approximation (the latter can also be easily
omitted). Here N is the number of bath oscillators (designated by k), which should be
taken to grow to infinity in the thermodynamic limit of the bath.

e We do not, in our numerically exact calculations below, require that J and I must
necessarily be very small (as compared with rates of the bath-assisted relaxations). In
any case, the regime of small J and [ is the simplest one to comprehend analytically.
In this regime of very small values of J and / (small parameters of the problem), the
oscillator relaxation is assumed to go as usual to the canonical state in the representation
of eigenstates of Hg when J = I ~ 0 (no particle transfer possible): this means to

Hs_p+ Hp =

o)
post =11 =M1y e v] = pi) ©)
v=0
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when the particle is at sites —1 or 1, or to

o0
pout =1 —e M1 " he M| = pl) (6)
v=0
when the particle is at site 0. Here
1 TV / 1 t vy
lv) = —=(""10) V) =—=@0b"+y)"|0) @)

Vvl V!
and |0) and |0’) are the corresponding oscillator ground states defined by »|0) = 0 and
(b + p)|0) = 0. Clearly, |0') = exp(y(b — b"))|0). Finally, 8 = (kzT)~! is the
reciprocal temperature in the energy units. One should add that relaxation to the above
canonical states may be not necessarily (as usually assumed) due to a weak coupling, in
the usual sense, of our oscillator to the bath (see a discussion of this point below).

e In particular when J and [ are assumed to be very small, the particle transfer (which is
the problem addressed here) is slow, i.e. details of the (relatively) fast oscillator relaxation
are unimportant. This is why we, in this study, do not need details of Hz and Hs_p
determining this fast relaxation and assume the latter in a simple form known for more
than 50 years. This form, suggested by Landau and Teller [10], which is compatible
with (4), yields a simple exponential oscillator relaxation if the oscillator is split off from
the particle, or if the particle transferred is fully immobile. The relaxation is assumed
according to the standard Landau—Teller formula for transition rates among oscillator
states (see (13) below) in the corresponding oscillator bases (according to the position
of the particle) mentioned above. Derivation of the exponential relaxation can be found,
including discussion of its validity, in many textbooks (see e.g. [11]).

With this, we can specify the above model in terms of formulae as follows. Let the Latin
indices m,n,... = —1, 0 or 1 designate the position of the particle and let the Greek
indices u,v,... = 0,1,2,... be the quantum numbers of our central oscillator (phonon
occupation numbers). Let 5(t) = Trpanp®*t?¥"(t) be the density matrix of the ‘particle +
oscillator’ system, i.e. 0,y (¢) its matrix in the representation of the states [mu) = |m) ®|u).
(p*¥s*bath (1) designates here the full density matrix of the system and bath.) Then the Liouville
equation determining the time development of p(¢) reads

.d

i P = D Lo, prgePpr.an (1) ®)
pm.qK

For (8) to include no inhomogeneous term, we only need the condition that there are no initial

correlations between our system and the bath. In (8), £, 10, pr,q« 18 the four-(double-)index

matrix of the Liouville superoperator £ [11] consisting of two parts as

L=Ls+L. ©)
Here Lg...=[Hs,...]/h,ie.
1
(»CS)m/A,nv,pn,qk = ﬁ{(HS)m;L,pn(SqK,nv - (HS)qK,nvsmu,pn}- (10)

As for the oscillator relaxation part of the Liouvillian £7¢ it should describe the Landau—Teller
relaxation to p5@", which should, according to (6) or (5), be different if the particle resides at

osc

site 0 or outside. Thus,
‘C;f/{t,llv.pn,qf( = (Smpgnq : {(1 - 5771,0)(1 - SVL,O)ICM,U,T[,K
+%[(] - am.O)an,O + 8m,0(1 - 8}’!,0)][’C/L,UJIJ( + ’C;L,V,JT,K] + 8"’!,08}1,0,(:;1_’])!7[”(}‘

Y
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Describing the Landau-Teller relaxation in terms of the generalized stochastic Liouville
equation model [12—14] in the parametrization of the Haken—Strobl-Reineker [15, 16] type,
we obtain K, , r , in the form [17-19]

IC,u,v,rr,/c - i<25,u.,v8n,lc I:y;ur - Slur Z yk,ui|
s

- (1 - 5;/,,1))51/.,7151),;( Z[Vk,u + Vk,v] + 2(] - 5;}.,\))5;/.,/(81),71)7;/.,1)> (12)
A

with the Landau-Teller [10] formula for the relaxation rate
Vi = k[ + 18, a1 + 1 exp(—Bhe)s, i1 ]. (13)

(With (4), we would obtain k ~ (1 — exp(—Bhw)) ™' Y, (Gr%)8 (w — ).) Notice that,
in contrast to the original stochastic Liouville equation model [15, 16, 20], the transfer rates
2y,.,v are in general asymmetric here because of inclusion of spontaneous (with respect to the
quantum bath) transfer processes v — w. The constant & is the only one reflecting the strength
of the oscillator coupling to the bath. It need not be small as compared with, for example,
|J|/h or |I]/h. For simplicity, we set as usual ¥ = 0 here. As for K/ it describes the

LV, T
same relaxation but with the particle present at site 0. Thus, this relaxation is no longer to p¢¢"

osc

in (5). Instead, the oscillator relaxation should go to the canonical state in the lattice deformed

(owing to the coupling H;th:d;;:g in (3)) by the polaron effect once the particle resides at site

0, i.e. to p%" in (6). Thus, in the basis of the deformed (polaron) states |v’), the form of K’

should be the same as that of X in the basis of the undeformed states |v). In other words

Ky = 2 Al o) 1) (e [W YKy (14)
IS/

As for the products such as (u|¢) = (¢'|u)*, we obtain from (7) that

Vé" ,LL' 2 — —min -
<M|§./> — max(yﬂ é-)'e Y /2V|H §|(_1)l’- (#C)L‘n/fmélz)()/Z) (15)
Here
ez d* - F(pta+l)
Lct ) = —Z pta — _1 r ,r 16
=g © ) Zrzo( G -nresasn 19

is the associated Laguerre polynomial.

Let us add here that, at the early stage of the work, we have also tested another form
of (11). The result confirmed that as far as such variations include, in the corresponding
situations, sufficiently fast relaxation to either (5) or (6), and also include proper dephasing,
the effect reported here must always be, in the corresponding region of the parameter space,
qualitatively reproduced.

As for the term o< +3[(1 = 8,1.0)85.0 + 8m,0(1 — 8,,0)] in (11) (and the coefficient 1 in
this term itself), its form fully corresponds to what is known about structure of E;f;a,nv, Pk
in both the stochastic Liouville equation model and its quantum generalizations (see, for
example, [14,16]) provided that only those mechanisms of the transversal relaxation (damping
of the off-diagonal elements of p,,,,, . (¢)) exist that also lead to the longitudinal one (transitions
among different states). In other words, we assume the form of Hg_p for which the yy
parameters of Haken, Strobl and Reineker [15, 16] are equal to zero. In view of the explanation
of the effect expected in section 4 below, we expect that complementing Hg_ 5 by terms yielding
the transversal relaxation also without contributing to the longitudinal one could, perhaps,
slow the particle transfer-and-relaxation process but would definitely make the final effect
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even more pronounced. A final comment worth making here is that we have seemingly fully
disregarded the possible influence of finite values of J and I on the structure of ), ,, 7 , and
’C;l,,l),ﬂ,lc in £7¢ in (11), (12), though we take the first-order (in J and ) terms into account
in Lg in (9) and (10). For I = J = 0, the structure of (12) can be well justified [21]. At
I # 0 # J, however, the corresponding corrections, if introduced by hand, would be small not
only due to presumably small values of J and 7 but also because of the presumed weakness
of the oscillator coupling to the bath. Scaling arguments where, in contrast to the usual weak-
coupling situation, not only a time-unit and the system—bath coupling but also the hopping
(transfer) integrals J and [ are scaled show this unambiguously—see the appendix. Here, we
state that, in fact, formal omission of / and J from the relaxation part of the Liouvillian is
not an approximation at all but is dictated, according to the physical regime chosen, by the
exact scaling mathematics. Physically, one can comprehend this by saying that I, J, k etc are
in fact scaled not with respect to each other but with respect to the reciprocal of a new time
unit 7, 77" o A? (A being a scaling parameter). So, for example, /-dependent (I being oc A?)
corrections to k o A2 scale out as A* terms even when / or J are comparable to or even greater
than (but still commensurable with) k.

3. Effect to be expected

One could already guess on the grounds of what has been said above what might be the effects
expected here. In order to comprehend the situation physically, let us add some heuristic
arguments in favour of them. Genuine proof that these rather vague arguments are in fact
correct and that our effect really does exist is provided only by the numerical calculations
below. The reader should also realize in what follows that, as we shall argue and show
below, the rectification effect with the particle even going against the acting external forces
appears here whenever the re-relaxation processes between states of the oscillator (5) and (6)
are sufficiently fast (the particle is slow). This fully corresponds to the original motivation
from microbiology: real biomolecules [1] respond to the presence of a processed particle
(molecule, molecular group) at a receptor before it has a chance to escape somewhere else.
This also corresponds to the style of work in which the original Maxwell demon was supposed
to open and close the gate between two compartments [22,23]. One should add here that such
biomolecules are definitely microscopic but, because they collaborate with (what we call here)
a macroscopic bath, the result of such an activity is definitely macroscopic.

Initially, before the (presumably) slow particle leaves site ‘—1°, the oscillator relaxes to
(or starts at t = O from) the canonical state (5). This means that the mean value of the first term
on the right-hand side of (2) with respect to the oscillator state is equal to 2y J (cilco + c:)c_l).
In other words, the particle is well allowed to come to site ‘O’ and return back to ‘—1’ unless
something happens with the oscillator in between. On the other hand, the mean value (with
respect to the oscillator) of the second term on the right-hand side of (2) is zero, indicating
that the particle cannot (on average) immediately proceed to site ‘+1’ once it appears at site
‘0’. Assume, however, that the particle really partially appeared at site ‘0’. Fast dephasing
processes leading to the transversal relaxation in the system caused by the transfer processes
among states of our oscillator as above allow us to treat the particle as deprived of any phase
relations with site ‘—1’. This means that the particle is localized separately at just site ‘—1" or
site ‘0’. (In other words, the p_; o and pg _; elements of the particle density matrix become
highly suppressed.) If the particle happens to appear at site ‘—1’, the story starts as from the
beginning. Assume therefore that, at a time ¢t > 0, the particle is localized at site ‘0’ only.
Then, according to the above picture, the oscillator quickly re-relaxes to the canonical state (6).
This implies that the mean value of b + b with respect to the canonical oscillator state (6)
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becomes equal to —2y. Hence, the mean values with respect to the oscillator of the first and
second terms on the right-hand side of (2) become 0 and 2y [ (cgcl + ccho), respectively. This
implies that the particle practically cannot return to site ‘—1’ but can freely proceed to site
‘+1°. Once this happens, however, the oscillator again re-relaxes to the canonical state (5).
Hence the return channel of the particle to site ‘0’ is closed and the particle is forced to remain
at site ‘+1°.

One should easily see that these arguments apply just ‘on average’. A possible objection
is that the gates between sites ‘—1’ and ‘0’, or ‘0’ and ‘41’, are never fully closed due
to fluctuations of the oscillator coordinate o« b + b around its mean values and its finite
relaxation rate. In any case, one should expect, at least for slow particle transfers, negligible
oscillator-coordinate fluctuations around the corresponding mean values, and, for a sufficiently
fast oscillator relaxation, an appreciable increase of population of site ‘+1° with respect to
equilibrium values provided by quantum mechanics and statistical physics in simple three-site
models. One should notice one very important aspect of the above argument: increase of the
site occupation probability p,; +1 = P41 (¢) is just on account of the above dynamic behaviour
of the oscillator and is not influenced by a site energy of the particle at, for example, site
‘+1’. Hence, the mechanism can increase the site occupation probability P.;(¢) even if the
transfer to site ‘+1° is connected with an appreciable increase of the (site) energy of the particle
transferred (i.e. when 8¢ in (2) is taken as positive). As there is no site-diagonal coupling of
the particle at site ‘+1’ to the oscillator, the above increase of P, (#) cannot be explained as a
polaron shift down in (site) energy of the particle at site ‘+1’. Hence, the transferred particle is
unbound (free) and its acquired potential energy may be optionally used in, for example, further
chemical reactions, for emission of a photon (in connection with, e.g., the particle return to
site ‘—1") to be absorbed by hotter bodies etc, as again argued below. The possibility of such
a cyclic work of the system when the back particle transfer ‘+1 — —1’ could be accompanied
by a deposition of the acquired site energy somewhere else is, of course, not trivial. For more
about this see below or, for another model, in [4]. The last comment to be placed here is that
we speak in the above arguments about canonical states which the oscillator in our system is,
by its presumably sufficiently strong interaction with the bath, driven to. We should stress
right here that this is just the situation as approximately viewed by the oscillator. The whole
‘particle + oscillator’ system is driven, by the bath-assisted transitions in the oscillator, out of
any canonical state. As argued in detail in the appendix, neither can the whole ‘system + bath’
complex in general be, in the stationary asymptotic situation, in the corresponding canonical
thermal equilibrium (i.e. Gibbs) state.

4. Calculation and results

We have performed calculations of, in particular, all the site occupation probabilities P, (t) =
Pun(@) =  Ppemp (1) for times ranging between t = 0 (when the particle is localized at
site ‘—1") and those values where a full transition to a stationary state is observed. Details of
the method are in the appendix. Our calculations clearly confirmed the existence of the above
effect. Numerical values used (see figure captions) range between the strong-coupling regime
[J/h =~ |I/h K k and the weak-coupling one |J|/h ~ |I|/h > k, where a continuous
transition to the weak-coupling solution according to the van Hove scheme (see the appendix)
with the usual order of site populations is observed (see figure 3). On the other hand, with our
identification of what is to be considered as a perturbation but still within the exact mathematics
by Davies (see the appendix), our results in the intermediate- and strong-coupling regimes
naturally deviate from those of the van Hove—Davies weak-coupling scheme (again figure 3).
One should add right here that criteria of the above regimes do not involve site energies,
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oscillator frequency, time or temperature. This is why our numerical data do correspond to
the above regimes irrespective of the fact that formally, in the scaling procedure used in the
appendix to derive starting equations (8)—(12), the joint parameter of both the system—bath
coupling and the particle hopping integrals is sent to zero. The point is that the decisive
competition between, or relative rates of, the particle transfer and bath-assisted relaxation
(that distinguishes the above strong- and weak-coupling regimes) is preserved. As for the
decreasing strength of the relaxation as well as particle transfer processes when the scaling
parameter goes to zero, it is compensated by increasing the time units (A% in . .. SUP)<32/<a
in (31) has the meaning of a reciprocal time unit). This is the physical spirit of the scaling
procedure, independent of what is identified, during the scaling procedure, as Hy and H;. For
those who still feel any distrust of the type of derivation of (8)—(12), another way of justifying
the resulting asymptotic values of site occupation probabilities is sketched in appendix C.

Figure 1 shows probabilities of finding the particle at sites ‘0’ and ‘+1” (lower and upper
clusters of curves), for different values of the energy-uphill step §e. The rather intermediate
temperatures used here meant that the convergence of the results with increasing number of
phonon mode vibrational states was, in contrast to other pictures presented below, rather slow.
With our finite computer memory, a full convergence with respect to the number of oscillator
levels was not achieved in all situations. Namely, with 20 unshifted and ten shifted oscillator
levels, the full convergence has still not been achieved, in contrast to other cases reported
below, in figure 1. Increasing the number of phonon levels still further, however, has always
been found to yield qualitatively the same picture as well as making the effect reported more
and more pronounced. Hence, no complications are expected*. As also just small corrections
are expected upon increasing the number of phonon states to infinity, reliable conclusions can
be drawn as for the full oscillator. One should add that full convergence in (24) (as a function
of the number of L (¢) functions really used) has been achieved. The most remarkable results
are as follows:

e In all cases, the resulting long-time (stationary) values of P.;(#) well exceed values
predicted by the standard equilibrium statistical thermodynamics. The latter could not,
of course, be expected to apply. The point is that our system is all the time driven out of
the standard thermal equilibrium because of the bath-assisted oscillator relaxation rates
exceeding particle transfer rates inside the system. As our results show, the stationary
situation is on the other hand established. However, neither can the whole ‘system + bath’
complex then be found in a canonical Gibbs state (see the appendix).

o The effect becomes, after the energy-uphill step §¢ exceeds some critical value, even more
pronounced with increasing de. So far, however, for purely technical reasons, we have
data for just §¢ < hw, though the above heuristic arguments do not indicate any change
in such behaviour even for 8¢ 2> hw.

e With increasing 8¢, on the other hand, the relaxation to the stationary situation becomes
slower.

In the remaining pictures, full convergence both in the number of phonon states and in the
number of expansion functions in (24) has been achieved. Thus, the results are really computer
exact. Figure 2 shows the same results as figure 1, except that the temperature has been now