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V Čápek1 and T Mančal1,2
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Abstract
A fully standard quantum model of a particle interacting with a single-mode
phonon system under the influence of a thermodynamic bath is considered.
Numerically exact solution shows that, for very specific values of parameters
involved, the phonon mode cooperating with the particle becomes able to
respond to particle hops and thus to suppress the back particle transfer. The
particle becomes free at the end of the process, during which it can be transferred
prevailingly in one direction only, even going uphill in energy, at the cost of just
the thermal energy of the single bath. This behaviour is due to the fact that both
the particle and the particle + oscillator density matrices differ, in the stationary
situations and for at least intermediate oscillator coupling to the bath, from the
respective canonical forms.

PACS numbers: 05.30.-d, 82.20.Mj, 82.40.-g

1. Introduction

Basic knowledge acquired from, for example, biology is that general systems can appreciably
profit from their capability to check the state of their surroundings as well as themselves and
to decide, on the grounds of the results thus obtained, about their next steps or activities.
This is the basis for activity of real biomolecules [1]. One can call such a type of behaviour
active. Except for some general rules and rather phenomenologically described examples
discussed by synergetics, no really microscopic open quantum systems defined by explicit
Hamiltonians and able to behave actively in the above sense have, however, been known and
investigated until recently. The point is that the system–bath interaction has so far, almost
exclusively, been treated by perturbation theory in the system–bath coupling only, which
may, for technical reasons, be only approximate beyond some finite orders and in the case
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of weak coupling to the reservoir. Finite orders appreciably distort, however, any contingent
correlations between the state of the system and that of its surroundings which underlie the
effect investigated here3.

The active systems of the type we are going to investigate here always consist of a central
system (particle) cooperating with the active part of the system. Under the assumption that rates
describing this cooperation are commensurable with, or greater than, relaxation rates caused by
the interaction with the bath (this and only this is the regime we call the intermediate- or strong-
coupling regime), one can expect unusual phenomena as already discussed [3, 4]. Deviations
from standard statistical physics as represented by the usual canonical ensemble are due to the
fact that the density matrix of the system deviates in such situations from its canonical form.
This is due to the fact that our system does, as usual, properly relax in stationary conditions
to a stationary state. This state is, however, never the truly standard thermal equilibrium one.
(Here, one should realize that the canonical form of the density matrix results in just the zeroth
order in the system–bath coupling, which is insufficient in the above intermediate- or strong-
coupling regimes.) In our case, as in [3,4], the system is represented by a single particle. Then
the one-way particle transfer obtained may be viewed as a slow scattering of the transferred
particles on a central or active part of the system with an instability and ensuing reorganization
of the latter in its intermediate states including the particle in question. If the reorganization
of the central system (necessary to block back-particle-transfer reaction channels) following
this instability is to be among two characteristic configurations, then this does not necessarily
imply that the quantum variable associated with this reorganization must be only dichotomic.
We have in mind the possibility of a usual oscillator mode having infinitely many excited
states and working, together with the particle, on an infinite bath representing a macroscopic
body. This then ensures the irreversible character of the dynamics. This oscillator mode has
a tendency of relaxing, at finite temperatures, to two different canonical states: dressed versus
undressed, or deformed versus undeformed in the polaron language, according to whether the
transferred particle happens to appear at a specific site—receptor or not. For the first time,
such a model has been reported in [5] and [3]; this paper provides a detailed form of the theory
as well as more extended results than preliminarily reported there.

The above behaviour is nothing but the particle–oscillator entanglement and all that is
possible provided that the particle is kept for a while fixed or is slow enough. The latter
assumption is, of course, not exactly but in principle well fulfilled when the particle can move.
This is then what provides us, upon sufficiently slow particle motion, with the possibility
of the oscillator responding dynamically to the presence of the particle by a sufficiently fast
re-relaxation to another state of the mode in question, as a result of the particle detection at
the specific site. The re-relaxation or reorganization can then block the back-particle-transfer
channel, i.e. allow effectively just one-way particle transfer. The point is that, for example,
the deformed canonical state of the mode may mean carrying the receptor with the transferred
particle away in space from the site the particle came from and, on the other hand, joining it
with another, previously disconnected site.

The importance of such particle behaviour for, inter alia, endothermic chemical reactions
can be hardly overestimated [6]. We should like to add right here that though our system
(our particle on three sites + the oscillator) is microscopic, the ‘system + bath’ complex is
macroscopic in its standard sense (it even becomes infinite with the infinite number of degrees

3 Technically, this observation implies the necessity to treat at least a part of the coupling to the surroundings as
exactly as possible. This why we, starting from [2], in many ensuing works as well as here, include part of the
surroundings (our oscillator below) of the real system of interest (transferred particles) in our system, utilizing the fact
that, in specific cases, Hamiltonians of such systems still remain relatively simple and solvable. Hence, the crucial
correlations can be properly included well. The rest of the surroundings is then treated as a bath in the usual sense.
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of freedom in the thermodynamic limit of the bath). Applications of the mechanism discussed
here to more realistic situations will, however, be discussed elsewhere.

The paper is organized as follows. In the next section, the Hamiltonian of the model
system, its coupling to the bath and the corresponding equations of motion are introduced. In
section 3, heuristic arguments based on an analysis of the model are given in order to elucidate
the effect to be expected. Numerical results confirming the arguments of section 3 are given
in section 4. The rigorous derivation of the equations of motion as well as further comments
on the results obtained can be found in the appendices.

2. Model

Having thus defined the aim of this work, let us start with introducing the model formally. As
usual in the nonequilibrium statistical mechanics, the quantum Hamiltonian can be split as

H = HS + HB + HS−B. (1)

HereHS designates the Hamiltonian of our system consisting, for simplicity, of a single particle
hopping among three sites available, and a single branch of harmonic vibrations (phonons)
interacting with the particle in a special but fully standard way. The Hamiltonian is standard.
What is in fact special is just very specific values of the parameters involved and the numerically
exact solution presented below (see also [3]). In order to be specific, we choose HS as

HS = J (c
†
−1c0 + c

†
0c−1) · [b + b† + 2γ ] + I (c

†
0c1 + c

†
1c0) · [b + b†]

+ δεc†
1c1 + h̄ω(b† + γ c

†
0c0)(b + γ c

†
0c0). (2)

Here c−1, c0 and c1 (or c†
−1, c†

0 and c
†
1) are the annihilation (or creation) operators of the

particle at the above three sites −1, 0 and 1. Next, b (b†) designates the phonon annihilation
(creation) operator while h̄ω is the phonon energy. Commutational relations between b and b†

are Bose–Einstein-like. More complicated models are easily at hand and can be investigated
as below. The spin variables, if any, and the (anti)commutational relations among the particle
creation and annihilation operators become irrelevant as we have just one particle here. The
latter, whenever located at the −1, 0 or 1 site, has site energy equal to 0, 0 or δε, respectively.
Therefore, if δε > 0 and the particle initially located outside site 1 is, at the very end of the
process, transferred to this site, the transfer is then up in energy (against the potential force
responsible for the site energy differences and acting on the particle). As for γ , this is a so
far arbitrary real parameter with the meaning of the relative strength of the site-local particle
coupling to the phonon mode as well as that of the rigid-lattice hopping integral for the ‘−1’
↔ ‘0’ particle transitions 2γ J with respect to the corresponding phonon-assisted amplitude J
in (2). This double-role of γ is one of the features of the model that condition the effect to be
reported below. As for I , this is the corresponding phonon-assisted hopping amplitude for the
‘0’↔ ‘+1’ particle transfers. Other Hamiltonians of the same type can be easily constructed
as well.

Such Hamiltonians as (2) have been, in different notations and context, used many times
in different branches of, for example, solid-state or molecular physics. Except for the greater
number of sites involved, this type of Hamiltonian corresponds to, for example, [7]. (The
coordinate of our oscillator mode then, or in general in the chemical context, represents the
solvent coordinate.) On a more general level, Hamiltonians of this type belong to a class of so-
called models of quantum dissipative systems of the type of the spin-boson model Hamiltonian
(with, of course, an explicit form of the bath and coupling to it, which still remains to be
specified here)—see [8, 9] and papers cited therein. Essential differences as compared with
these works consist here only in investigation of one specific regime (definitely outside the
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weak-coupling one) for very specific values of parameters and application of an analytical
method allowing us to derive starting equations by a rigorous method of scaling and in the
above specific regime. These are solved numerically. The similarity to, and correspondence
with, all the older works is what makes our conclusions obtained here so surprising and,
simultaneously, so challenging.

In order to understand why the behaviour reported below is, in a way, so exceptional
and difficult to find, one should realize that, for example, three site Hamiltonians with site-
local as well as nonlocal linear coupling to a single harmonic phonon mode needed here are
characterized by 13 parameters (three site energies, three hopping integrals, three site-local
and three site-nonlocal coupling strengths and the phonon frequency). Two of them can be
taken as irrelevant owing to possible energy shifts and rescaling. We should, on the other hand,
also add temperature in energy units kBT . Thus, we have a space of 12 model parameters. In
only a very limited part of the latter, however, can the effect reported below be expected and
really found. Moreover, we should (as already stressed above) take the above couplings inside
the system (particle and the phonon mode) as generally intermediate or rather strong, i.e. we
should avoid perturbational arguments of any type. Concerning the form of HS in (2), one
should realize that in addition to other terms, it also includes the site-diagonal particle–phonon
coupling

H
site−diag
part−ph = γ h̄ωc

†
0c0(b + b†). (3)

This coupling is of vital importance as will be argued below. With (2) and corresponding forms
of HB and HS−B , our problem then consists in solving the linear Schrödinger or Liouville–
von Neumann equations or equations derived from them, which are, however, always linear.
Irrespective of that, spontaneous self-organization (known otherwise in nonlinear and rather
phenomenological models) surprisingly appears even without, for example, persistent external
flows.

Now, the question is which form of the Hamiltonian of the bath HB and the system–bath
coupling HS−B we shall use. Let us stress that we are interested in neither the precise details
(dynamics) of the bath nor the role of specific forms of HS−B . This is why we only assume
the following points.

• The bath is assumed to be connected to the system by just its coupling to the above
oscillator. Thus, for particle relaxation, our oscillator plays the role of a bottle-neck. The
simplest form of HS−B (and HB) compatible with this assumption as well as that below
concerning the Landau–Teller kinetics (11)–(13) is, for example,

HS−B + HB = 1√
N

∑
k

h̄�kGk(b
†Bk + B

†
k b) +

∑
k

h̄�kB
†
kBk. (4)

This is nothing but the coordinate–coordinate coupling of the oscillator of the system
with those from the bath, in the rotating wave approximation (the latter can also be easily
omitted). Here N is the number of bath oscillators (designated by k), which should be
taken to grow to infinity in the thermodynamic limit of the bath.
• We do not, in our numerically exact calculations below, require that J and I must

necessarily be very small (as compared with rates of the bath-assisted relaxations). In
any case, the regime of small J and I is the simplest one to comprehend analytically.
In this regime of very small values of J and I (small parameters of the problem), the
oscillator relaxation is assumed to go as usual to the canonical state in the representation
of eigenstates of HS when J = I ≈ 0 (no particle transfer possible): this means to

ρcanosc = [1− e−βh̄ω]
∞∑
ν=0

|ν〉e−βνh̄ω〈ν| ≡ ρ(1)osc (5)
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when the particle is at sites −1 or 1, or to

ρcanosc = [1− e−βh̄ω]
∞∑
ν=0

|ν ′〉e−βνh̄ω〈ν ′| ≡ ρ(0)osc (6)

when the particle is at site 0. Here

|ν〉 = 1√
ν!
(b†)ν |0〉 |ν ′〉 = 1√

ν!
(b† + γ )ν |0′〉 (7)

and |0〉 and |0′〉 are the corresponding oscillator ground states defined by b|0〉 = 0 and
(b + γ )|0′〉 = 0. Clearly, |0′〉 = exp(γ (b − b†))|0〉. Finally, β = (kBT )

−1 is the
reciprocal temperature in the energy units. One should add that relaxation to the above
canonical states may be not necessarily (as usually assumed) due to a weak coupling, in
the usual sense, of our oscillator to the bath (see a discussion of this point below).
• In particular when J and I are assumed to be very small, the particle transfer (which is

the problem addressed here) is slow, i.e. details of the (relatively) fast oscillator relaxation
are unimportant. This is why we, in this study, do not need details of HB and HS−B
determining this fast relaxation and assume the latter in a simple form known for more
than 50 years. This form, suggested by Landau and Teller [10], which is compatible
with (4), yields a simple exponential oscillator relaxation if the oscillator is split off from
the particle, or if the particle transferred is fully immobile. The relaxation is assumed
according to the standard Landau–Teller formula for transition rates among oscillator
states (see (13) below) in the corresponding oscillator bases (according to the position
of the particle) mentioned above. Derivation of the exponential relaxation can be found,
including discussion of its validity, in many textbooks (see e.g. [11]).

With this, we can specify the above model in terms of formulae as follows. Let the Latin
indices m, n, . . . = −1, 0 or 1 designate the position of the particle and let the Greek
indices µ, ν, . . . = 0, 1, 2, . . . be the quantum numbers of our central oscillator (phonon
occupation numbers). Let ρ̄(t) = T rbathρ

sys+bath(t) be the density matrix of the ‘particle +
oscillator’ system, i.e. ρmµ,nν(t) its matrix in the representation of the states |mµ〉 = |m〉⊗|µ〉.
(ρsys+bath(t) designates here the full density matrix of the system and bath.) Then the Liouville
equation determining the time development of ρ̄(t) reads

i
d

dt
ρmµ,nν(t) =

∑
pπ,qκ

Lmµ,nν,pπ,qκρpπ,qκ(t). (8)

For (8) to include no inhomogeneous term, we only need the condition that there are no initial
correlations between our system and the bath. In (8), Lmµ,nν,pπ,qκ is the four-(double-)index
matrix of the Liouville superoperator L [11] consisting of two parts as

L = LS + Lrel . (9)

Here LS . . . = [HS, . . .]/h̄, i.e.

(LS)mµ,nν,pπ,qκ = 1

h̄
{(HS)mµ,pπδqκ,nν − (HS)qκ,nνδmµ,pπ }. (10)

As for the oscillator relaxation part of the Liouvillian Lrel , it should describe the Landau–Teller
relaxation to ρcanosc , which should, according to (6) or (5), be different if the particle resides at
site 0 or outside. Thus,

Lrel
mµ,nν,pπ,qκ = δmpδnq · {(1− δm,0)(1− δn,0)Kµ,ν,π,κ

+ 1
2 [(1− δm,0)δn,0 + δm,0(1− δn,0)][Kµ,ν,π,κ + K′µ,ν,π,κ ] + δm,0δn,0K′µ,ν,π,κ}.

(11)
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Describing the Landau–Teller relaxation in terms of the generalized stochastic Liouville
equation model [12–14] in the parametrization of the Haken–Strobl–Reineker [15, 16] type,
we obtain Kµ,ν,π,κ in the form [17–19]

Kµ,ν,π,κ = i

(
2δµ,νδπ,κ

[
γµπ − δµπ

∑
λ

γλ,µ

]

− (1− δµ,ν)δµ,πδν,κ
∑
λ

[γλ,µ + γλ,ν] + 2(1− δµ,ν)δµ,κδν,π γ̄µ,ν

)
(12)

with the Landau–Teller [10] formula for the relaxation rate

γµ,ν = k̃[(µ + 1)δν,µ+1 + µ exp(−βh̄ω)δν,µ−1]. (13)

(With (4), we would obtain k̃ ≈ 2π
N
(1− exp(−βh̄ω))−1 ∑

k(Gk�k)
2δ(ω−�k).) Notice that,

in contrast to the original stochastic Liouville equation model [15, 16, 20], the transfer rates
2γµ,ν are in general asymmetric here because of inclusion of spontaneous (with respect to the
quantum bath) transfer processes ν → µ. The constant k̃ is the only one reflecting the strength
of the oscillator coupling to the bath. It need not be small as compared with, for example,
|J |/h̄ or |I |/h̄. For simplicity, we set as usual γ̄... = 0 here. As for K′µ,ν,π,κ , it describes the
same relaxation but with the particle present at site 0. Thus, this relaxation is no longer to ρcanosc

in (5). Instead, the oscillator relaxation should go to the canonical state in the lattice deformed
(owing to the coupling H

site−diag
part−ph in (3)) by the polaron effect once the particle resides at site

0, i.e. to ρcanosc in (6). Thus, in the basis of the deformed (polaron) states |ν ′〉, the form of K′
should be the same as that of K in the basis of the undeformed states |ν〉. In other words

K′µ,ν,π,κ =
∑
ζ,η,ι,λ

〈µ|ζ ′〉〈η′|ν〉〈ι′|π〉〈κ|λ′〉Kζ,η,ι,λ. (14)

As for the products such as 〈µ|ζ ′〉 = 〈ζ ′|µ〉∗, we obtain from (7) that

〈µ|ζ ′〉 =
√
ζ ! · µ!

max(µ, ζ )!
e−γ

2/2γ |µ−ζ |(−1)µ−min(µ,ζ )L
|µ−ζ |
min(µ,ζ )(γ

2). (15)

Here

Lα
p(z) =

ezz−α

p!

dp

dzp
(e−zzp+α) =

p∑
r=0

(−1)r
4(p + α + 1)

r!(p − r)!4(r + α + 1)
zr (16)

is the associated Laguerre polynomial.
Let us add here that, at the early stage of the work, we have also tested another form

of (11). The result confirmed that as far as such variations include, in the corresponding
situations, sufficiently fast relaxation to either (5) or (6), and also include proper dephasing,
the effect reported here must always be, in the corresponding region of the parameter space,
qualitatively reproduced.

As for the term ∝ + 1
2 [(1 − δm,0)δn,0 + δm,0(1 − δn,0)] in (11) (and the coefficient 1

2 in
this term itself), its form fully corresponds to what is known about structure of Lrel

mµ,nν,pπ,qκ

in both the stochastic Liouville equation model and its quantum generalizations (see, for
example, [14,16]) provided that only those mechanisms of the transversal relaxation (damping
of the off-diagonal elements of ρmµ,nν(t)) exist that also lead to the longitudinal one (transitions
among different states). In other words, we assume the form of HS−B for which the γ0

parameters of Haken, Strobl and Reineker [15,16] are equal to zero. In view of the explanation
of the effect expected in section 4 below, we expect that complementingHS−B by terms yielding
the transversal relaxation also without contributing to the longitudinal one could, perhaps,
slow the particle transfer-and-relaxation process but would definitely make the final effect
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even more pronounced. A final comment worth making here is that we have seemingly fully
disregarded the possible influence of finite values of J and I on the structure of Kµ,ν,π,κ and
K′µ,ν,π,κ in Lrel in (11), (12), though we take the first-order (in J and I ) terms into account
in LS in (9) and (10). For I = J = 0, the structure of (12) can be well justified [21]. At
I �= 0 �= J , however, the corresponding corrections, if introduced by hand, would be small not
only due to presumably small values of J and I but also because of the presumed weakness
of the oscillator coupling to the bath. Scaling arguments where, in contrast to the usual weak-
coupling situation, not only a time-unit and the system–bath coupling but also the hopping
(transfer) integrals J and I are scaled show this unambiguously—see the appendix. Here, we
state that, in fact, formal omission of I and J from the relaxation part of the Liouvillian is
not an approximation at all but is dictated, according to the physical regime chosen, by the
exact scaling mathematics. Physically, one can comprehend this by saying that I , J , k̃ etc are
in fact scaled not with respect to each other but with respect to the reciprocal of a new time
unit τ , τ−1 ∝ λ2 (λ being a scaling parameter). So, for example, I -dependent (I being ∝ λ2)
corrections to k̃ ∝ λ2 scale out as λ4 terms even when I or J are comparable to or even greater
than (but still commensurable with) k̃.

3. Effect to be expected

One could already guess on the grounds of what has been said above what might be the effects
expected here. In order to comprehend the situation physically, let us add some heuristic
arguments in favour of them. Genuine proof that these rather vague arguments are in fact
correct and that our effect really does exist is provided only by the numerical calculations
below. The reader should also realize in what follows that, as we shall argue and show
below, the rectification effect with the particle even going against the acting external forces
appears here whenever the re-relaxation processes between states of the oscillator (5) and (6)
are sufficiently fast (the particle is slow). This fully corresponds to the original motivation
from microbiology: real biomolecules [1] respond to the presence of a processed particle
(molecule, molecular group) at a receptor before it has a chance to escape somewhere else.
This also corresponds to the style of work in which the original Maxwell demon was supposed
to open and close the gate between two compartments [22,23]. One should add here that such
biomolecules are definitely microscopic but, because they collaborate with (what we call here)
a macroscopic bath, the result of such an activity is definitely macroscopic.

Initially, before the (presumably) slow particle leaves site ‘−1’, the oscillator relaxes to
(or starts at t = 0 from) the canonical state (5). This means that the mean value of the first term
on the right-hand side of (2) with respect to the oscillator state is equal to 2γ J (c†

−1c0 + c†
0c−1).

In other words, the particle is well allowed to come to site ‘0’ and return back to ‘−1’ unless
something happens with the oscillator in between. On the other hand, the mean value (with
respect to the oscillator) of the second term on the right-hand side of (2) is zero, indicating
that the particle cannot (on average) immediately proceed to site ‘+1’ once it appears at site
‘0’. Assume, however, that the particle really partially appeared at site ‘0’. Fast dephasing
processes leading to the transversal relaxation in the system caused by the transfer processes
among states of our oscillator as above allow us to treat the particle as deprived of any phase
relations with site ‘−1’. This means that the particle is localized separately at just site ‘−1’ or
site ‘0’. (In other words, the ρ−1,0 and ρ0,−1 elements of the particle density matrix become
highly suppressed.) If the particle happens to appear at site ‘−1’, the story starts as from the
beginning. Assume therefore that, at a time t > 0, the particle is localized at site ‘0’ only.
Then, according to the above picture, the oscillator quickly re-relaxes to the canonical state (6).
This implies that the mean value of b + b† with respect to the canonical oscillator state (6)
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becomes equal to −2γ . Hence, the mean values with respect to the oscillator of the first and
second terms on the right-hand side of (2) become 0 and 2γ I (c†

0c1 + c
†
1c0), respectively. This

implies that the particle practically cannot return to site ‘−1’ but can freely proceed to site
‘+1’. Once this happens, however, the oscillator again re-relaxes to the canonical state (5).
Hence the return channel of the particle to site ‘0’ is closed and the particle is forced to remain
at site ‘+1’.

One should easily see that these arguments apply just ‘on average’. A possible objection
is that the gates between sites ‘−1’ and ‘0’, or ‘0’ and ‘+1’, are never fully closed due
to fluctuations of the oscillator coordinate ∝ b + b† around its mean values and its finite
relaxation rate. In any case, one should expect, at least for slow particle transfers, negligible
oscillator-coordinate fluctuations around the corresponding mean values, and, for a sufficiently
fast oscillator relaxation, an appreciable increase of population of site ‘+1’ with respect to
equilibrium values provided by quantum mechanics and statistical physics in simple three-site
models. One should notice one very important aspect of the above argument: increase of the
site occupation probability ρ+1,+1 ≡ P+1(t) is just on account of the above dynamic behaviour
of the oscillator and is not influenced by a site energy of the particle at, for example, site
‘+1’. Hence, the mechanism can increase the site occupation probability P+1(t) even if the
transfer to site ‘+1’ is connected with an appreciable increase of the (site) energy of the particle
transferred (i.e. when δε in (2) is taken as positive). As there is no site-diagonal coupling of
the particle at site ‘+1’ to the oscillator, the above increase of P+1(t) cannot be explained as a
polaron shift down in (site) energy of the particle at site ‘+1’. Hence, the transferred particle is
unbound (free) and its acquired potential energy may be optionally used in, for example, further
chemical reactions, for emission of a photon (in connection with, e.g., the particle return to
site ‘−1’) to be absorbed by hotter bodies etc, as again argued below. The possibility of such
a cyclic work of the system when the back particle transfer ‘+1→−1’ could be accompanied
by a deposition of the acquired site energy somewhere else is, of course, not trivial. For more
about this see below or, for another model, in [4]. The last comment to be placed here is that
we speak in the above arguments about canonical states which the oscillator in our system is,
by its presumably sufficiently strong interaction with the bath, driven to. We should stress
right here that this is just the situation as approximately viewed by the oscillator. The whole
‘particle + oscillator’ system is driven, by the bath-assisted transitions in the oscillator, out of
any canonical state. As argued in detail in the appendix, neither can the whole ‘system + bath’
complex in general be, in the stationary asymptotic situation, in the corresponding canonical
thermal equilibrium (i.e. Gibbs) state.

4. Calculation and results

We have performed calculations of, in particular, all the site occupation probabilities Pn(t) ≡
ρnn(t) =

∑
µ ρmµ,mµ(t) for times ranging between t = 0 (when the particle is localized at

site ‘−1’) and those values where a full transition to a stationary state is observed. Details of
the method are in the appendix. Our calculations clearly confirmed the existence of the above
effect. Numerical values used (see figure captions) range between the strong-coupling regime
|J |/h̄ ≈ |I |/h̄ � k̃ and the weak-coupling one |J |/h̄ ≈ |I |/h̄ � k̃, where a continuous
transition to the weak-coupling solution according to the van Hove scheme (see the appendix)
with the usual order of site populations is observed (see figure 3). On the other hand, with our
identification of what is to be considered as a perturbation but still within the exact mathematics
by Davies (see the appendix), our results in the intermediate- and strong-coupling regimes
naturally deviate from those of the van Hove–Davies weak-coupling scheme (again figure 3).
One should add right here that criteria of the above regimes do not involve site energies,
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oscillator frequency, time or temperature. This is why our numerical data do correspond to
the above regimes irrespective of the fact that formally, in the scaling procedure used in the
appendix to derive starting equations (8)–(12), the joint parameter of both the system–bath
coupling and the particle hopping integrals is sent to zero. The point is that the decisive
competition between, or relative rates of, the particle transfer and bath-assisted relaxation
(that distinguishes the above strong- and weak-coupling regimes) is preserved. As for the
decreasing strength of the relaxation as well as particle transfer processes when the scaling
parameter goes to zero, it is compensated by increasing the time units (λ2 in . . . sup0�λ2t�a

in (31) has the meaning of a reciprocal time unit). This is the physical spirit of the scaling
procedure, independent of what is identified, during the scaling procedure, as H0 and H1. For
those who still feel any distrust of the type of derivation of (8)–(12), another way of justifying
the resulting asymptotic values of site occupation probabilities is sketched in appendix C.

Figure 1 shows probabilities of finding the particle at sites ‘0’ and ‘+1’ (lower and upper
clusters of curves), for different values of the energy-uphill step δε. The rather intermediate
temperatures used here meant that the convergence of the results with increasing number of
phonon mode vibrational states was, in contrast to other pictures presented below, rather slow.
With our finite computer memory, a full convergence with respect to the number of oscillator
levels was not achieved in all situations. Namely, with 20 unshifted and ten shifted oscillator
levels, the full convergence has still not been achieved, in contrast to other cases reported
below, in figure 1. Increasing the number of phonon levels still further, however, has always
been found to yield qualitatively the same picture as well as making the effect reported more
and more pronounced. Hence, no complications are expected4. As also just small corrections
are expected upon increasing the number of phonon states to infinity, reliable conclusions can
be drawn as for the full oscillator. One should add that full convergence in (24) (as a function
of the number of L̄k(t) functions really used) has been achieved. The most remarkable results
are as follows:

• In all cases, the resulting long-time (stationary) values of P+1(t) well exceed values
predicted by the standard equilibrium statistical thermodynamics. The latter could not,
of course, be expected to apply. The point is that our system is all the time driven out of
the standard thermal equilibrium because of the bath-assisted oscillator relaxation rates
exceeding particle transfer rates inside the system. As our results show, the stationary
situation is on the other hand established. However, neither can the whole ‘system + bath’
complex then be found in a canonical Gibbs state (see the appendix).
• The effect becomes, after the energy-uphill step δε exceeds some critical value, even more

pronounced with increasing δε. So far, however, for purely technical reasons, we have
data for just δε < h̄ω, though the above heuristic arguments do not indicate any change
in such behaviour even for δε � h̄ω.
• With increasing δε, on the other hand, the relaxation to the stationary situation becomes

slower.

In the remaining pictures, full convergence both in the number of phonon states and in the
number of expansion functions in (24) has been achieved. Thus, the results are really computer
exact. Figure 2 shows the same results as figure 1, except that the temperature has been now
taken lower. The most remarkable effects of lowering the temperature are:

• that the dynamics of the relaxation to a stationary distribution becomes slightly faster, and
• that the effect becomes less pronounced.

4 Understanding the above limitations concerning the number of oscillator levels used as a model assumption, figure 1
reproduces computer-exact results for the thus specified model.
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Figure 1. Probabilities of finding the particle at sites ‘0’ (lower cluster) and ‘+1’ (upper cluster of
curves) as functions of the dimensionless time t = h̄/J , I = J > 0. Initially, the particle is located
at site ‘−1’ and the oscillator is in the corresponding canonical state (5). Parameters h̄ω = 5J ,
kBT = J , γ = 1, k̃ = 3J/h̄, δε = 0.1J , J , 2J and 3J (full, dash–dotted, dotted and dashed
curves, respectively).

Figure 2. The same as figure 1 but with lower temperatures kBT = 0.2J .

Both these features can be comprehended by noticing that small polarons become more self-
localized (less mobile) with increasing temperature [14]. Thus, with increasing temperature,
our dynamic gate leading to the observed prevailing particle localization at site ‘+1’ also
becomes less and less penetrable for the particle back-escape from site ‘+1’ to ‘0’ and ‘−1’.

Figure 3 shows the role and effect of increasing oscillator relaxation rate. One should
realize that, after any particle hop, it is this phonon (re-)relaxation which provides closing of
our dynamic gate, hindering the back-particle flow (escape) from site ‘+1’. Really, increasing
the phonon relaxation rate makes the effect, as seen in figure 3, more and more pronounced.
Worth noticing is that at low values of the oscillator relaxation rate (k̃ = 0.5J/h̄ in figure 3)



Phonon mode cooperating with particle serving as Maxwell gate and rectifier 2121

Figure 3. The same probabilities for h̄ω = 5J , kBT = 0.2J , γ = 1, δε = J and k̃ = 0.5J/h̄,
2J/h̄, 4J/h̄ and 8J/h̄ (full, dotted, dashed and dash–dotted curves, respectively). For the same
parameters but with the density matrix of the system taken in the canonical form, P+1 = 0.056.

the relative order of the asymptotic populations P+1(t → +∞) and P0(t → +∞) becomes as
usual (population of the higher level is less and vice versa), i.e. the effect disappears.

Hence, though our model is nothing but a special case of a general interacting particle–
phonon Hamiltonian, we have verified that it is able to yield an active (or intelligent) behaviour
in the sense specified above. The contingent increase of the particle energy upon the ‘−1’
→ ‘+1’ transfer is fully at the cost of the bath energy only, as already discussed in, for
example, [24, 25]. (Owing to complications mentioned in [26], we avoid here discussion of
entropy.) This type of behaviour should be confronted with, for example, detailed balance
conditions of the usual equilibrium statistical thermodynamics [27]. If it could be transferred
to the macroworld and implemented into analogous but cyclically working systems, it would
mean implications for validity of the Planck–Thomson formulation of the second law [28].

5. Discussion and conclusions

One should add that we have solved, for a few situations, the set (8) as it stands, i.e. as a set
of (a high number of) differential equations by the Runge–Kutta method. Within numerical
accuracy, the result was the same as with our method (see the appendix). As the derivation of
starting equation (8) is in the analytical scaling sense also rigorous (involving no approximation
at all), our results are reliable and attention should be turned to their interpretation.

The careful reader could immediately try to confront the obtained behaviour of our system
with the second law, following reasoning known from, for example, [4]. Two objections in
favour of the second law can, however, be still raised. First, one might object that we have still
a long way to any challenge of the second law as our system is microscopic while the second
law applies to macroscopic systems only. In this connection, one should, however, realize
several facts.

• Our system, i.e. the particle on three sites complemented by the central oscillator, is
definitely microscopic. So was, however, the original Maxwell demon. Let us cite
from [22]: ‘. . . if we conceive a being whose faculties are so sharpened that he can follow
every molecule in its course, such a being . . . would be able to do what is at present
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impossible to us. . . ’. Then description of the demon follows, that it must be able to make
just detection followed by a binary decision. This is what our system as well as, for
example, molecular machines in biological systems really do.
• So as to violate the second law, this being or our central system must of course work

on a macroscopic body. Our system complemented by the bath does, however, form a
macroscopic body (system).

In the original Maxwell system (gas in a vessel), however, there was a second portion where the
‘warmer’ molecules were deposited. In our case, in order to obtain a possibility of a continuous
(periodic) activity of the model, we would correspondingly need necessarily something, for
example some other macroscopic system or second bath, where the gained energy would be
deposited in a useful form. If so, we would not need to treat these macroscopic bodies and
the total energy balance in detail to discuss violability of the macroscopic thermodynamics;
calculation of the energy flow between the two baths through our microscopic system would
be enough. For another system, this programme was accomplished in [4]. For our microscopic
system treated here and complemented by two macroscopic baths, the results will be published
elsewhere. At the present stage, however, the persistent lack of this second bath serving as a
collector of the gained energy is connected with the inability of our system to work cyclically.
This is the second objection against raising the above behaviour of our model against the second
law. At present, therefore, though the behaviour of our system obtained above is challenging,
it still cannot be used against the second law of thermodynamics. In any case, the real effect
indicated is in a way macroscopic. Just for purposes of illustration: assume that the deposition
(to the second macroscopic bath) of the gained energy connected with the back ‘+1’→ ‘−1’
transfer, if it is possible in principle as in [4], is faster than our uphill particle transfer. Let
J ≈ I ≈ 0.01 eV determine, by the order of magnitude, the transfer frequency ≈|J |/h̄, and
let δε ≈ 0.1 eV. Then we would obtain, ignoring possible losses, the energy gain from only
one such single microscopic system collaborating with a macroscopic body (our bath, which
is understood, in a limiting sense, to even be infinite here) ≈|J | · δε/h̄ ≈ 1 erg s−1. Even
without presuming a finite concentration of such independently working systems, we obtain
that already this effect of our microscopic central system (as measured by the heat transferred
from a macroscopic bath) collaborating with the macroscopic reservoir is really macroscopic.

Hence, summarizing, we have the following.

• On the grounds of the present model, we still cannot question the second law of
thermodynamics.
• The results obtained (skew asymptotic particle distribution), however, do not comply with

such standard results of statistical thermodynamics as the detailed balance condition.
• Mechanisms violating the detailed balance can, however, be used to construct dissipative

systems (in contact with thermodynamic baths) with persistent flows [27]. Such flows
generally also transfer energy, which can be directly connected with the possibility to
scrutinize principles upon which thermodynamics rests. All this shows how little the
physics beyond basic principles of nonequilibrium statistical thermodynamics is still
understood.
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Appendix

A.1. Generalized master equations and their solution

Already before solving (8) with (9)–(14), one should notice that for really dominating k̃, one
never obtains the asymptotic (with time increasing to infinity) solution in the form of the
canonical density matrix of the system ρ̄ ∝ exp(−βHS). The point is that ρ̄ would then result,
according to (9)–(14) and in contrast to its canonical form, diagonal in the above basis |mµ〉.
This is why really new effects should be expected.

The way of solving (8) consists of two steps. First, we convert (8) into a set of nine
(time-convolution) generalized master (i.e. integro-differential) equations

d

dt
ρmn(t) =

+1∑
p,q=−1

[umn,pqρpq(t) +
∫ t

0
wmn,pq(t − τ)ρpq(τ ) dτ ] + Imn(t) (17)

for matrix elements of the particle density matrix ρmn(t) =
∑

ν ρmν,nν(t). Let us recall that the
diagonal elements ρnn(t) are equal to probabilities Pn(t) of finding the particle at site n = −1,
0 or 1 in the system, irrespective of the state of the environment (oscillator and the bath). In
the second step, we solve (17) by a special method, converting it to a set of linear algebraic
equations.

We obtain equations (8)–(17) using the time-independent projection formalism of
Nakajima and Zwanzig [29–31]. The exact form of the coefficientsumn,pq , memorieswmn,pq(t)

and initial condition term Imn(t) is

umn,pq = −i
∑
µ,ν,λ

Lmµ,nµ,pν,qλ:
R
ν,λ

wmn,pq(t) = −
∑
µ,ν,λ

[Le−i(1−P)Lt (1− P)L]mµ,nµ,pν,qλ:
R
νλ

(18)

and

Imn(t) = −i
∑
µ

[Le−i(1−P)Lt (1− P)ρ̄(0)]mµ,nµ. (19)

Here ρ̄(0) is the initial density matrix of the complex ‘particle + oscillator mode’ ρ̄(t) (with
matrix elementsρmµ,nν(t)). In our formulation, the bath is already projected off, being reflected
just in the Lrel matrix entering (9) above. As for P , this is the Argyres–Kelley [32] projector
(superoperator) defined by its matrix elements

Pmµ,nν,pπ,qκ = δmpδnq:
R
µ,νδπ,κ (20)

with :Rµ,ν so far arbitrary but fulfilling the normalization condition
∑

u :
R
µ,µ = 1 ensuring that

P2 = P (idempotency condition).
Let us return to the initial density matrix ρ̄(0). We shall specify the problem assuming

the following.

• Initially, the oscillator and the particle were statistically independent, i.e.

ρ̄(0) = ρ(0)⊗ ρosc(0) (21)

where ρ(t) = T roscρ̄(t) and ρosc(t) = T rpart ρ̄(t) are the density matrices of the particle
and the oscillator, respectively.
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• The initial density matrix of the oscillator ρosc coincides with :R , i.e.

ρoscµν (0) = :Rµν (22)

(choice of :R in (20)).

Then (1 − P)ρ(0) = 0, i.e. the initial condition term Imn(t) = 0. In fact, we shall assume
here that ρosc = ρcanosc in (5). This introduces the initial oscillator temperature (equal to that of
the bath in (13)) into (17). Further, we assume that ρmn(0) = δmnδn,−1, i.e. that the particle is
initially at site ‘−1’ (on the left).

For the solution of (17) we use an older method by Skála and Bı́lek [33–35] recently
proved to be operative by Menšı́k [17, 18]. Instead of using modified Bessel functions as
in [17,18], we shall involve functions directly related to the above Laguerre polynomials (16)
as suggested by Skála (unpublished, see also the application of the method in [19, 36, 37] for
another model). In connection with working with the set of equations (17) (instead of just one
scalar integro-differential equation as in [17, 18]), this allows us to extend the time interval
investigated up to the end of the relaxation process. The exact method used is based on several
important steps. First, let us introduce the (modified Laguerre) functions

L̄p(z) = e−azL0
p(z) (23)

where a is a so far arbitrary real parameter. These functions (forming a complete set) are then
used to express the required density matrix elements ρmn(t) as well as the memory functions
wmn,pq(t) as series

ρmn(t) =
+∞∑
k=0

ρkmnL̄k(t)

wmn,pq(t) =
+∞∑
k=0

wk
mn,pqL̄k(t).

(24)

Owing to well known properties of the Laguerre polynomials with respect to convolutions and
differentiation [38, 39], one can easily show that∫ t

0
L̄m(τ )L̄n(t − τ) dτ = L̄m+n(t)− L̄m+n+1(t)

d

dt
L̄n(t) = −

n−1∑
m=0

L̄m(t)− aL̄n(t).

(25)

Thus, the set of integro-differential (generalized master) equations (17) to be solved,
supplemented by the above initial condition, becomes the algebraic set of equations

δm,−1δn,−1 =
+1∑

p,q=−1

Mmn,pqρ
0
pq

δm,−1δn,−1 −
k−1∑
j=0

[
ρjmn +

+1∑
p,q=−1

{wk−j
mn,pq − wk−j−1

mn,pq }ρjpq
]
=

+1∑
p,q=−1

Mmn,pqρ
k
pq

(26)

k = 1, 2, 3, . . . . The specific forms of the left-hand sides of both the equations here are due
to the above initial condition used. Further

Mmn,pq = (1− a)δm,pδn,q − umn,pq − w0
mn,pq . (27)

Therefore, in order to determine the expansion coefficients ρimn, i = 0, 1, 2, . . . of the solution,
one must first know the coefficients, i.e.wi

mn,pq , i = 0, 1, 2, . . . . As for the umn,pq coefficients,
they are fully determined by their definition in (18).
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From (23) and definition of the Laguerre polynomials (16), one can easily obtain that
the modified Laguerre functions (23) are orthonormal with respect to the scalar product
(f, g) = ∫ +∞

0 exp((−1 + 2a)x)f (x)g(x) dx, i.e. that∫ +∞

0
e(−1+2a)xL̄m(x)L̄n(x) dx = δmn. (28)

Thus, from the second equation of (24), we obtain that

wk
mn,pq =

∫ +∞

0
e(−1+2a)twmn,pq(t)L̄k(t) dt. (29)

An important observation on which the present method relies is now that this time integral can
be calculated exactly. It yields after introducing here the definition of the memory function
from (18) that

wk
mn,pq = −

∑
µνλ

[L{i(1− P)L− a}k{i(1− P)L + 1− a}−k−1(1− P)L]mµ,nµ,pν,qλ:νλ

= −
∑
µνλ

[L(1− P)LA−1(1−A−1)k+1]mµ,nµ,pν,qλ:νλ

A = i(1− P)L + (1− a). (30)

As all the matrices are defined above, calculation of all the coefficients wk
mn,pq , k = 0, 1, 2 . . .,

as well as umn,pq , and, finally, solution of (26) for ρkmn is just a matter of a straightforward
algebra. Results obtained are, apart from some limitations imposed by requirement of non-
negative eigenvalues of A, insensitive to the choice of parameter a. We have always taken
a = 0.3.

A.2. Derivation of starting equations

Projection methods by Nakajima and Zwanzig [29–31] start from the Liouville–von Neumann
equation for the density matrix of the system and bath. This equation automatically implies
that, for example, energy of the ‘system + bath’ complex is preserved. (The energy of just the
system, i.e. our particle and the oscillator, cannot be conserved owing to relaxation processes
in the system.) Applying the Argyres–Kelley projector [32] to the so called Nakajima–
Zwanzig [29–31] identity leads to time-convolution generalized equations (TC-GMEs) for the
density matrix ρ̄(t) for our system, i.e. the complex ‘particle + oscillator mode’ [32, 40]. An
alternative method leading to time-convolutionless generalized master equations (TCL-GMEs)
for ρ̄(t) is provided by application of the same projector in the formalisms by Fuliński and
Kramarczyk, or Shibata, Hashitsume, Takahashi and Shingu [41–45]5. By mathematically
well established methods [46, 47], both TC-GMEs and TCL-GMEs may be then turned to
equations of quantum dynamical semigroups of the form (8)–(10). There is no space for
speculations here. So, the only problem regards the form of Lrel in (11) above.

In order to avoid discussions due to inaccurate description of mathematical steps leading
to (8), let us cite from mathematical literature: the exact formula (1.18) of [48] rewritten in
physical terms reads

lim
λ→0

sup
0�λ2t�a

‖ρ̄exact (t)− e−i(L0+λ〈L1〉+iλ2H)t ρ̄(0)‖ = 0 (31)

5 Neither this TCL-GME nor the TC-GME of the previous sentence should be mistaken for the generalized master
equations of appendix A.1. In the present section, we speak about projecting off (all the information concerning) the
bath, reducing the treatment to just ρ̄. On the other hand, in appendix A.1, we mean to start from ρ̄ and to project off
the oscillator mode, arriving at a set of equations for the density matrix of just the particle.
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where (see formulae (1.19) and (1.12) of [48])

H . . . =
∫ +∞

0
dx TrB (eiL0x(−iL1)e

−iL0x(1− P)(−iL1)(. . .⊗ ρB)

〈L1〉 . . . = TrB(L1 . . .⊗ ρB).

(32)

(Finite constant a is here arbitrary, P . . . = (TrB . . .)×ρB is the Argyres–Kelley projector and
ρB is the initial density matrix of the bath assumed in the canonical form.) In (31), ρ̄exact (t) is
the exact density matrix of the system (particle + oscillator in our case) with its time dependence
determined from the Liouville equation for the whole ‘system + bath’ complex, subsequently
taking the trace over the bath, while

ρ̄(t) = e−i(L0+λ〈L1〉+iλ2H)t ρ̄(0) (33)

is the same quantity where its time dependence is given, as follows from (33), by

i
d

dt
ρ̄(t) = (L0 + λ〈L1〉 + iλ2H)ρ̄(t). (34)

HereH = H0 +λH1 is a formal way of splitting the HamiltonianH of our system and bath into
an arbitrary unperturbed partH0 and a corresponding correctionλH1, and Lj . . . = [Hj, . . .]/h̄,
j = 0, 1. Incidentally, prescription (32) is not the only one; formula (1.33) of [48] proves that
(in fact infinitely many) other (and, in the scaling limit, equivalent) forms exist. One should
in particular mention the form with

H→ H@ = lim
t→+∞

1

2t

∫ +t

−t
e−iLS (λ=0)xHeiLS (λ=0)x dx (35)

(see also [49]), where the correspondence with (11) is direct. In any case, (31) proves the
general validity of (34), exactly in the scaling sense.

Now, as long as we identify H0 = HS + HB and λH1 = HS+B , terms L0ρ̄(t), λ〈L1〉ρ̄(t)
and +iλ2Hρ̄(t) give the term in (8) resulting from LS in (9), its possible temperature-dependent
renormalization due to the system–bath coupling (there is even no such term with our choice (4)
and canonical form of ρB) and the terms in (8) resulting from Lrel in (9), respectively. Notice
that owing to the definition of H0 involving the whole Hamiltonian of the system HS , the
relaxation (as described by (32)) is among eigenstates of HS and goes to a canonical form of
ρ̄(t) when t → +∞ [50]. This is the usual weak-coupling scheme according to the van Hove
scheme.

On the other hand, our scheme is based on putting formallyJ, I ∝ λ2 (implying thatHS(λ)

becomes λ dependent) and identification H0 = HS(λ = 0) + HB , λH1 = HS−B + HS(λ �=
0) − HS(λ = 0) ≡ HS−B + AHS . Then L0ρ̄(t) in (34) gives only LS(λ = 0) in (8). On
the other hand, the sum (L0 + λ〈L1〉)ρ̄(t) reproduces, up to the same renormalization terms
as in the weak-coupling alternative, all the term LSρ̄(t) ≡ LS(λ �= 0)ρ̄(t) in (8). Finally,
H0 now involves only HS(λ = 0), i.e. the I - and J -dependent terms AHS do not contribute
to H via L0 in (32). Moreover, by algebraic properties of P and TrB . . . (TrB[HB, . . .] = 0,
P(1 − P) = (1 − P)P = 0, P[AHS, . . .] = [AHS,P . . .]), all [AHS, . . .] terms from L1

fall out from H. Hence, H turns out to be completely I and J independent. In other words,
the relaxation is now completely due to the system–bath coupling and proceeds exclusively
among eigenstates of HS(λ = 0). Because of the fact that our bath interacts in our system just
with the oscillator, this means relaxation among just oscillator eigenstates.

Both the above alternatives are mathematically equally justified. One cannot accept either
one of them and automatically exclude the other one. The identification of H0 and H1 is
dictated just by the chosen physical regime. In the weak-coupling case when the bath-assisted
processes are appreciably slower than all the transfer processes inside the system, the weak-
coupling identification and theory is fully legitimate. The same applies, however, to the second
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alternative, i.e. our choice of theory in the case when the bath-assisted processes become
comparable to (or even faster than but still commensurable with) the particle transfer inside
the system. About (and only about) the latter situation we speak here.

A.3. Another justification of the results

Those who still feel a kind of mistrust of the above derivation of (8)–(12), as presented by the
Davies type of scaling described above, might feel more satisfied by another procedure which
we are going to sketch here and which is just based on a standard stationary perturbation
theory. The method is based on deriving, by, for example, the methods of Nakajima and
Zwanzig [29–31] with the Argyres–Kelley projector P [32,40], the system of exact TC-GMEs

d

dt
ρmµ,nν(t) = − i

h̄
(TrB[H, ρ̄(t)⊗ ρB])mµ,nν +

∑
pπ,qκ

∫ t

0
dτ wmµ,nν,pπ,qκ(τ )ρpπ,qκ(t − τ).

(36)

Taking the thermodynamic limit of the bath and turning t → +∞ yields

0 = − i

h̄
(TrB[H, ρ̄(+∞)⊗ ρB])mµ,nν +

∑
pπ,qκ

∫ +∞

0
dτ wmµ,nν,pπ,qκ(τ ) · ρpπ,qκ(+∞). (37)

Expanding now the time integrals
∫ +∞

0 dτ . . . of the memory functions wmµ,nν,pπ,qκ(τ ) in
powers of HS−B reproduces fully the weak-coupling scheme of van Hove–Davies applicable
in the regime where bath-assisted relaxation is much (and in the mathematical sense, infinitely)
slower than the particle transfer processes inside the system. We instead here assume the
physical regime where the particle hopping rates are commensurable with the bath-assisted
relaxation. Based on this, we must identify as a perturbation λH1 = HS−B + HS(λ �=
0)−HS(λ = 0) as above. Then (37) reduces, after some straightforward but tiring algebra, to
the long-time limit of (8)–(12), thus reproducing completely the above results. The latter are
therefore not tributary to just the above modification of the Davies scaling procedure.

A few additional comments are still worth adding: first, the method used justifies our
starting equation (8) just in its long-time limit. Thus, the result yields (8)–(12) in the stationary
case when the time derivative on the left-hand side of (8) disappears. It is, however, not difficult
to verify that the same reasoning may be used to justify (8)–(12) together with i d

dt ρmµ,nν(t) on
the left-hand side provided we only assume time greater than the decay time of the memory
functions involved in the time-convolution GME formalism. Second, equally well as from
the Nakajima–Zwanzig formalism, one can start from the time-convolutionless formalisms of
Fuliński and Kramarczyk, or Shibata, Hashitsume, Takahashi and Shingu [41–45]. We again
recover (8) with just, due to a different form of what is considered as a perturbation, another
form of Lrel than usual. In general, for each derivation of (8) with a standard (weak-coupling)
form of Lrel , there exists a corresponding derivation of (8) with our form of Lrel and vice
versa. In other words, there is a one-to-one correspondence between the corresponding proofs.
Therefore, the only doubt that could, in our opinion, survive, is connected with the possibility
of writing down (8) for any form of Lrel . This task has, however, been solved many times and
equations (8) now have a broad application in, for example, the energy and particle transfer
problem. Mathematically oriented readers may again be referred to, for example, [46, 47].

A.4. More about deviation from standard equilibrium statistical thermodynamics

An attempt might still appear to reconcile our conclusions above with the standard equilibrium
statistical thermodynamics. The conjecture might be that owing to the strong correlation effects
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between the particle and its surroundings, perhaps not the system itself but the whole ‘system +
bath’ complex could be, in the stationary situation, in a canonical state in the usual sense. This
would then justify attempts to explain or disprove the above skewing of the particle distribution
to one side by methods of standard statistical physics. Arguments exist, however, that even
such a general conjecture is not true.

In order to make the discussion as simple as possible, let us put J = 0 in (2) with the
initial condition that the particle is initially distributed arbitrarily but just at sites ‘0’ and ‘+1’.
With (4), we thus have

HS+B = I (c
†
0c1 + c

†
1c0) · [b + b†] + h̄ω(b† + γ c

†
0c0)(b + γ c

†
0c0)

+
1√
N

∑
k

h̄�kGk(b
†Bk + B

†
k b) +

∑
k

h̄�kB
†
kBk. (38)

For simplicity, we set everywhere here δε = 0. The stationary situation (independent of
details of such initial conditions) achieved after some transient period is then again of the type
above, i.e. the (long-time) asymptotic site occupation probabilities P0 ≡ P0(t → +∞) and
P1 ≡ P1(t → +∞) fulfill

P0 < P1. (39)

One should stress mainly two points here.

• In the small-I limit, I in (38) determines just the dynamics of the 0↔ 1 dynamics but not
the long-time asymptotics of site occupation probabilities P0 and P1. This may be most
easily seen by standard projecting off the bath and the oscillator mode in the Liouville
equation for the system + bath density matrix with Hamiltonian (38). Using the projector

P . . . = |0〉〈0|TrBTrosc . . . |0〉〈0| ⊗ ρ(0)osc ⊗ ρB + |1〉〈1|TrBTrosc . . . |1〉〈1| ⊗ ρ(1)osc ⊗ ρB

(40)

and assuming, for example, the initial condition

ρsys+bath(t = 0) = |0〉〈0| ⊗ ρ(0)osc ⊗ ρB (41)

(ρB being the initial density matrix of the bath) yields from the resulting generalized
master equations [29–31]

lim
I→0

P1

P0
=

∫ +∞
0 w

(2)
1←0(t) dt∫ +∞

0 w
(2)
0←1(t) dt

. (42)

Here w(2)
... (t) are the corresponding memory functions in the lowest (second) order in I .

Thus the ratio P1/P0 is, for low I as a ratio of two terms ∝ I 2, I independent. Because
P0 + P1 = 1, the same applies to the long-time asymptotics P0 as well as P1 separately.
Because of the difference between ρ(1)osc and ρ(0)osc, the memory functions w(2)

0←1 and w
(2)
1←0

turn out to be structurally (as well as in their values) appreciably different. This is why
the ratio (42) differs from unity.
• Even if this were not true and if P1 and P0 in (39) fulfilled, for example, P1−P0 = O(I 2)

(making the long-time asymptotics P1 and P0 practically equal for very small though
finite I ), a contradiction with formula (47) to be derived below would still appear. Here,
another interesting point is that the right-hand side of (42) becomes ∝ γ 2 for γ � 1,
which shows that then in fact P1 � P0.

Let now

H
(0)
S+B = 〈0|HS+B |0〉 H

(1)
S+B = 〈1|HS+B |1〉 (43)
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be effective Hamiltonians of the system oscillator interacting with the bath but with the particle
fixed at sites ‘0’ and ‘+1’. It is not difficult to see that

eSH (0)
S+Be−S = H

(1)
S+B − γ 2 h̄ω(1/N)

∑
k h̄�kG

2
k

h̄ω − (1/N)
∑

k h̄�kG
2
k

(44)

where

S = 4(b − b†) +
∑
k

Ak(Bk − B
†
k )

Ak = − 1√
N
Gk4 4 = − h̄ωγ

h̄ω − (1/N)
∑

k h̄�kG
2
k

.
(45)

Assume now that the stationary form of the density matrix of the ‘system + bath’ complex
can be, according to Gibbs, written as

ρsys+bath = f (HS+B) (46)

where f (x) is a decreasing holomorphic function of x. For f (x) ∝ exp(−x), it would mean
a canonical distribution. Then

P1 = TrBTrosc〈1|f (HS+B)|1〉 = TrBTroscf (H
(1)
S+B) + O(I 2)

P0 = TrBTrosc〈0|f (HS+B)|0〉 = TrBTroscf (H
(0)
S+B) + O(I 2)

= TrBTroscf (e
−SeSH (0)

S+B) + O(I 2) = TrBTroscf (e
SH

(0)
S+Be−S) + O(I 2)

= TrBTroscf

(
H

(1)
S+B − γ 2 h̄ω(1/N)

∑
k h̄�kG

2
k

h̄ω − (1/N)
∑

k h̄�kG
2
k

)
+ O(I 2). (47)

For the decreasing function f (x) and for the particular case of, for example, h̄ω >

(1/N)
∑

k h̄�kG
2
k , these results for P0 and P1 (implying that P0 remains greater than P1

even in the limit of extremely small I ) are incompatible with (39). Hence (46) cannot be
true for the asymptotic density matrix of the ‘system + bath’ complex. This clearly makes
the validity of (46)—the assumption forming one of basic pillars of the equilibrium Gibbs
statistical mechanics—only conditional. In particular, in our situation, this means that our
‘system + bath’ complex cannot in general be, in the stationary asymptotic situation, in the
thermal equilibrium canonical state.
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